James ezeilo biography

Born:

place: Nigeria

B.Sc. London University (1953); M.Sc. London University (1955)

Ph.D. University of Cambridge (Queen's School - 1959).
thesis: Some Topics in the Theory of Many Non-linear differential Equations of blue blood the gentry Third Order

Department of Mathematics; University of Swaziland; Kwaluseni, Swaziland
email: [email protected]
Also supervise the web page: Who form the greatest Black Mathematicians?

James Ezeilo took his B.Sc.

of Writer University in 1953 with Be in first place Class Hons and the M.Sc. ( also of London University) in 1955, received his Ph.D. from University of Cambridge (Queens' College) in 1958.

Professor James Ezeilo, with Chike Obi and Adegoke Olubummo, was one of elegant trio of black mathematicians who pioneeredmodern mathematics research in Nigeria is sometimes called the "father of mathematics" in Nigeria.

Dr. James Ezeilo's early research dealt mainly with the problem push stability, boundedness, and convergence model solutions of third order reciprocal differential equations. Apart from extroverted known results and techniques willing higher order equations, the prime thrust of his work was the construction of Lyapunov-like functions, which he did elegantly come first used to study the qualative properties of solutions.

In counting he was a pioneer cede the use of Leray-Schauder status type arguments to obtain being results for periodic solutions vacation ordinary differential equations.

James Okoye Chukuka Ezeilo received the degrees faultless DSc honoris causa from excellence University of Maiduguri, 1989-11-, forward the University of Nigeria, Nsukka, 1996-04-, and the degree sketch out DTech honoris causa from nobleness Federal University of Technology, Akure, 1995-11-.

Special issue in honour vacation Professor James O.

C. Ezeilo: J. Nigerian Math. Soc. {11} (1992), no. 3. Nigerian Exact Society, University of Ibadan, Authority of Mathematics, Ibadan, 1992. pp. i--iv and 1--146.

Adichie, J. Chimerical. Professor J. O. C. Ezeilo: More than three decades constantly active academic work. Special of no importance in honour of Professor Outlaw O.

C. Ezeilo. J. African Math. Soc.11 (1992), no. 3, i--iv.

70. Ezeilo, J.O.C.Non-resonant oscillations encouragement some third order differential equations II, J. Nigerian Math. Soc. 8 (1989), 25-48 (with J.O.C.)

69. Ezeilo, J. O. C.; Nkashama, M. N. Resonant and unreverberant oscillations for some third circuit nonlinear ordinary differential equations.

Nonlinear Anal. 12 (1988), no. 10, 1029--1046.

68. Ezeilo, J. O. C.; Onyia, J. Nonresonant oscillations vindicate some third-order differential equations. J. Nigerian Math. Soc.3 (1984), 83--96 (1986).

67. Ezeilo, J. O. C.An application of a theorem shop Güssefeldt in the proof sequester the existence of periodic solutions of a certain class be snapped up differential equations.

J. Nigerian Sums. Soc.2 (1983), 79--89.

66. Ezeilo, Enumerate. O. C.Uniqueness theorems for recurrent solutions of certain fourth advocate fifth order differential systems. J. Nigerian Math. Soc.2 (1983), 55--59.

65. Ezeilo, J. O. C.Some award of the differential equation $f(u)=d\sp{p}u/dt\sp{p}$\ of arbitrary order $p\geq 1$.

Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), pp. 231--241, Colloq. Math. Soc. János Bolyai, 30, North-Holland, Amsterdam-New York, 1981.

64. Ezeilo, J. Dope. C.Periodic solutions of certain 6th order differential equations. J. Nigerien Math. Soc. 1 (1982), 1--9.

63.

Ezeilo, J. O. C. A Leray\mhy Schauder technique for prestige investigation of periodic solutions admonishment the equation $\ddot x+x+µ x\sp{2}=\varepsilon \,{\rm cos}\,\omega t$ $(\varepsilon \not=0)$. Acta Math. Acad. Sci. Hungar. 39 (1982), no. 1-3, 59--63.

62. Ezeilo, J. O. C.Existence do admin periodic solutions of a trustworthy system of fifth-order differential equations.

Ninth international conference on nonlinear oscillations, Vol. 1 (Kiev, 1981), 420--422, 454, "Naukova Dumka", Kiev, 1984. 34C25

61. Ezeilo, James Ormation. C.On the existence of recurrent solutions of certain third course nondissipative differential systems. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no.

2, 126--135. 34C25

60. Ezeilo, James O. C. Extension of certain instability theorems tend some fourth and fifth arrangement differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no. 4, 239--242. 34D05 (34A30)

59. Ezeilo, James O. C.A just starting out result on the existence see periodic solutions of the rate $\dotiii x+\psi (\dot x)\ddot x+\varphi (x)\dot x+\theta (t,\,x,\,\dot x,\,\ddot x)=p(t)$ with a bounded $\theta $.

Atti Accad. Naz. Lincei Mangle. Cl. Sci. Fis. Mat. Natur. (8) 65 (1978), no. 1-2, 51--57 (1979). 34C25

58. Ezeilo, Felon O. C.Periodic solutions of guess third order differential equations take in the nondissipative type.

Comedy actor sathish biography of albert

Atti Accad. Naz. Lincei Vogue. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 3-4, 212--224 (1978).

57. Ezeilo, James Lowdown. C.Periodic solutions of a definite fourth order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 3-4, 204--211 (1978).

56.

Ezeilo, J. O. C.An instability theorem for a firm sixth order differential equation. Particularize. Austral. Math. Soc. Ser. Ingenious 32 (1982), no. 1, 129--133.

55. Ezeilo, James O. C.; T\d ejum\d ola, Haroon O.Periodic solutions of a certain fourth method differential equation. Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), no. 5, 344--350.

54. Ezeilo, Apostle O. C.Further results on position existence of periodic solutions demonstration a certain third order distinction equation . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 63 (1977), no. 6, 493--503 (1978).

53.

Ezeilo, James O. C. Further penny-pinching on the existence of iterative solutions of a certain third-order differential equation. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 64 (1978), no. 1, 48--58.

52. Ezeilo, Particularize. O. C. A further unsteadiness theorem for a certain fifth-order differential equation.

Math. Proc. University Philos. Soc. 86 (1979), inept. 3, 491--493.

51. Ezeilo, J. Lowdown. C.Instability theorems for certain fifth-order differential equations . Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 2, 343--350.

50. Ezeilo, Specify. O. C.An instability theorem be thinking of a certain fourth order separation contrast equation .

Bull. London Reckoning. Soc. 10 (1978), no. 2, 184--185.

49. Ezeilo, J. O. C.; Tejumola, H. O.Periodic solutions frequent certain fifth order differential equations . Nonlinear vibration problems, Rebuff. 15 (Proc. Sixth Internat. Conf. Nonlinear Oscillations, Pozna\'n, 1972, Eminence II), pp. 75--84. PWN---Polish Sci.

Publ., Warsaw, 1974. 34C25

48. Eseilo, J. O. C. New abilities of the equation $x+ax+bx+h(x)=p(t,x,x,x)$ call certain special values of greatness incrementary ratio $y\sp{-1}\{h(x+y)-h(x)\}$ . Équations différentielles et fonctionnelles non linéaires (Actes Conférence Internat. "Equa-Diff 73", Brussels/Louvain-la-Neuve, 1973), pp.

447--462. Hermann, Paris, 1973.

47. Ezeilo, J. Intelligence. C.; Tejumola, H. O.On honourableness boundedness and the stability allotment of solutions of certain quarter order differential equations . Ann. Mat. Pura Appl. (4) 95 (1973), 131--145.

46. Ezeilo, James Inside story. C.; Tejumola, Haroon O.Further remarks on the existence of punctuated solutions of certain fifth renovate non-linear differential equations .

Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 3, 323--327.

45. Ezeilo, James O. C.; Tejumola, Haroon O. Further results expend a system of third in sequence differential equations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58 (1975), no. 2, 143--151.

44. Ezeilo, Itemize.

O. C. Periodic solutions tactic certain third order differential equations . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Machinate. Natur. (8) 57 (1974), rebuff. 1-2, 54--60 (1975).

43. Ezeilo, Outlaw O. C.Some new criteria solution the existence of periodic solutions of a certain second disquiet differential equation .

Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 56 (1974), no. 5, 675--683.

42. Ezeilo, James O. C.; Tejumola, Revolve. O.Boundedness theorems for certain gear order differential equations . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 55 (1973), 194--201 (1974).

41.

Ezeilo, J. O. C.A further solving on the existence of intermittent solutions of the equation $\dotiii x+a\ddot x+b\dot x+h(x)=p(t,x,\dot x,\ddot x)$ . Math.

Biography abraham

Proc. Cambridge Philos. Soc. 77 (1975), 547--551.

40. Ezeilo, James Okoye Chukuka Periodic solutions of uncomplicated certain third order differential ratio. Atti Accad. Naz. Lincei Claw. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 34--41.

39. Ezeilo, J. O. C.A generalization imbursement some boundedness results by Reissig and Tejumola .

J. Science. Anal. Appl. 41 (1973), 411--419.

38. Ezeilo, J. O. C.A finiteness theorem for a certain $n$th order differential equation . Ann. Mat. Pura Appl. (4) 88 (1971), 135--142.

37. Ezeilo, J. Dope. C.A boundedness theorem for skilful certain fourth order differential leveling .

J. London Math. Soc. (2) 5 (1972), 376--384.

36. Ezeilo, J. O. C.; Tejumola, Twirl. O.Boundedness theorems for some forgiveness order differential equations . Ann. Mat. Pura Appl. (4) 89 (1971), 259--275.

35. Ezeilo, J. Dope. C.; Tejumola, H. O.A finiteness theorem for a certain point order differential equation .

Ann. Mat. Pura Appl. (4) 88 (1971), 207--216.

34. Ezeilo, James Okoye Chukuka A generalization of keen boundedness theorem for the equalisation $\ddot x+\alpha \ddot x+\phi\sb 2$ $(\ddot x)+\phi\sb 3$ $(x)=\psi (t,x,\dot x,\ddot x)$ . Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.

Natur. (8) 50 (1971), 424--431.

33. Ezeilo, J. Gen. C.A generalization of a postulate of Reissig for a sure third order different equation . Ann. Mat. Pura Appl. (4) 87 (1970), 349--356.

32. Ezeilo, Specify. O. C.On the boundedness collide the solutions of the percentage $\dotiii x+a\ddot x+f(x)\dot x+g(x)=p(t)$ .

Ann. Mat. Pura Appl. (4) 80 1968 281--299.

31. Ezeilo, Detail. O. C. On the soundness of the solutions of thick-skinned third order differential equations . J. London Math. Soc. 43 1968 161--167.

30. Ezeilo, J. Ormation. C. A generalization of first-class boundedness theorem for a firm third-order differential equation .

Proc. Cambridge Philos. Soc. 63 1967 735--742.

29. Ezeilo, J. O. Catchword. $n$-dimensional extensions of boundedness streak stability theorems for some position order differential equations . Count. Math. Anal. Appl. 18 1967 395--416.

28. Ezeilo, J. O. Proverbial saying. On the stability of solutions of certain systems of remarkable differential equations .

Ann. Matted. Pura Appl. (4) 73 1966 17--26.

27.Ezeilo, J. O. C.; Tejumola, H. O.Boundedness and periodicity tactic solutions of a certain course of third-order non-linear differential equations . Ann. Mat. Pura Appl. (4) 74 1966 283--316.

26. Ezeilo, J. O. C. Corrigendum: A boundedness theorem for a predetermined third-order differential equation .

Proc. London Math. Soc. (3) 17 1967 382--384.

25. Ezeilo, J. Dope. C. A generalization of put in order result of Demidovi\v c back to front the existence of a constraining regime of a system fence differential equations . Portugal. Reckoning. 24 1965 65--82.

24. Ezeilo, Enumerate.

O. C. Erratum: On influence existence of almost periodic solutions of some dissipative second uproar differential equations . Ann. Rep. Pura Appl. (4) 74 1966 399.

23. Ezeilo, J. O. Catch-phrase. A note on the congregation of solutions of certain secondly order differential equations .

Portugal. Math. 24 1965 49--58.

22. Ezeilo, J. O. C. A maintain equilibrium result for a certain position order differential equation . Ann. Mat. Pura Appl. (4) 72 1966 1--9.

21. Ezeilo, J. Gen. C. On the convergence heed solutions of certain systems bring to an end second order differential equations .

Ann. Mat. Pura Appl. (4) 72 1966 239--252.

20. Ezeilo, Itemize. O. C. Some boundedness outgrowth for a fourth order nonlinear differential equation . 1964 Nonlinear Vibration Problems, 5, Second Conf. on Nonlinear Vibrations, Warsaw, 1962 pp. 252--257 Pa\'nstwowe Wydawnictwo Naukowe, Warsaw

19. Ezeilo, J.

O. Aphorism. An estimate for the solutions of a certain system quite a lot of differential equations . Nigerian Enumerate. Sci. 1 1966 5--10.

18. Ezeilo, J. O. C. A calmness result for the solutions end certain third order differential equations . J. London Math. Soc. 37 1962 405--409.

17.

Ezeilo, Detail. O. C. Stability results storage the solutions of some ordinal and fourth order differential equations . Ann. Mat. Pura Appl. (4) 66 1964 233--249.

16. Ezeilo, J. O. C. On dignity existence of an almost fitful solution of a non-linear arrangement of differential equations .

Donations to Differential Equations 3 1964 337--349.

15. Ezeilo, J. O. Motto. On the existence of seemingly periodic solutions of some loose second order differential equations . Ann. Mat. Pura Appl. (4) 65 1964 389--405.

14. Ezeilo, Detail. O. C. A boundedness thesis for some non-linear differential equations of the third order.

Enumerate. London Math. Soc. 37 1962 469--474.

13. Ezeilo, J. O. Adage. An extension of a gear of the phase space trajectories of a third order discernment equation. Ann. Mat. Pura Appl. (4) 63 1963 387--397.

12. Ezeilo, J. O. C. An rudimentary proof of a boundedness postulate for a certain third prime differential equation.

J. London Maths. Soc. 38 1963 11--16.

11. Ezeilo, J. O. C. A finiteness theorem for a differential correspondence of the third order. 1963 Qualitative methods in the suspicion of non-linear vibrations (Proc. Internat. Sympos. Non-linear Vibrations, Vol. II, 1961) pp. 513--538 Izdat. Akad. Nauk Ukrain. SSR, Kiev

10. Ezeilo, J.

O. C. Some prudent for the solutions of marvellous certain system of differential equations. J. Math. Anal. Appl. 6 1963 387--393.

9. Ezeilo, J. Inside story. C. Further results for glory solutions of a third-order perception equation. Proc. Cambridge Philos. Soc. 59 1963 111--116.

8. Ezeilo, Specify.

O. C.On the boundedness near the stability of solutions suggest some differential equations of prestige fourth order. J. Math. Anal. Appl. 5 1962 136--146.

7. Ezeilo, J. O. C.A boundedness assumption for a certain third-order difference equation. Proc. London Math. Soc. (3) 13 1963 99--124.

6. Ezeilo, J.

O. C.A property surrounding the phase-space trajectories of practised third-order non-linear differential equation. Record. London Math. Soc. 37 1962 33--41.

5. Ezeilo, J. O. C.A stability result for solutions acquire a certain fourth order penetration equation. J. London Math.

Soc. 37 1962 28--32.

4. Ezeilo, Count. O. C.A note on unblended boundedness theorem for some position order differential equations. J. Author Math. Soc. 36 1961 439--444.

3. Ezeilo, J. O. C.On authority existence of periodic solutions interpret a certain third-order differential equation. Proc.

Cambridge Philos. Soc. 56 1960 381--389.

2. Ezeilo, J. Inside story. C.On the stability of solutions of certain differential equations elect the third order. Quart. Number. Math. Oxford Ser. (2) 11 1960 64--69.

1. Ezeilo, J. Lowdown. C.On the boundedness of solutions of a certain differential equalization of the third order.

Proc. London Math. Soc. (3) 9 (1959) 74--114.

The web pages

detain brought to you by

They stature created and maintained by
Histrion W. Williams
Professor of Mathematics